Lecture 20: Topology Continued, Mesh Data Structures

COMPSCI/MATH 290-04

Chris Tralie, Duke University

3/29/2016

Announcements

\triangleright Group Assignment 2 Due Tomorrow 3/30
\triangleright First project milestone Friday 4/8/2016
\triangleright Merged Units 3+4 Into 1 (I'm traveling on 4/21)
\triangleright Attendance sheets

Table of Contents

- Connected Sums, Genus, Boundaries
\triangleright Mesh Data Structures

Edge Collapse Case

Planar graphs: $V-E+F=2$

Review: Convex Shadow Casting (Stereographic Projection)

Review: Torus Euler Characteristic

Review: Torus Euler Characteristic

9 vertices, 27 edges, 18 faces: $\chi=0$

Review: Torus Euler Characteristic

COMPSCI/MATH 290-04

Duplicating Spheres

What's the euler characteristic of two spheres?

Duplicating Tori

What's the euler characteristic of two tori?

Connected Sum

$$
T_{1} \# T_{1}=T_{2}
$$

Connected Sum

$$
\begin{aligned}
& T_{1} \# T_{1}=T_{2} \\
& \text { What is the Euler characteristic? }
\end{aligned}
$$

Connected Sum: g Tori

What is the Euler characteristic of $T_{N}=T_{1} \# T_{1} \# \ldots \# T_{1} \mathrm{~g}$ times?

Connected Sum: g Tori

What is the Euler characteristic of $T_{N}=T_{1} \# T_{1} \# \ldots \# T_{1} \mathrm{~g}$ times?

$$
\chi=2-2 g
$$

Connected Sum: g Tori

What is the Euler characteristic of $T_{N}=T_{1} \# T_{1} \# \ldots \# T_{1} \mathrm{~g}$ times?

$$
\chi=2-2 g
$$

- g is known as the "genus"

Connected Sum with Spheres

What is the connected sum of a sphere with a sphere?

Connected Sum with Spheres

What is the connected sum of a torus with a sphere?

Boundaries / Discs

Boundaries / Discs

Euler Characteristic: Homology

$$
\chi=\beta_{0}-\beta_{1}+\beta_{2}
$$

- β_{0} : Number of connected components
- β_{1} : Number of independent loops/cycles
- β_{2} Number of independent voids

Something With Euler Characteristic of 3?

Table of Contents

\triangleright Connected Sums, Genus, Boundaries

- Mesh Data Structures

Order of Edges in Planar Graph

$$
V-E+F=2
$$

Order of Edges in Planar Graph

$$
V-E+F=2
$$

\triangleright There are at least 3 edges per face, and each edge is on the boundary of 2 faces for a manifold mesh

Order of Edges in Planar Graph

$$
V-E+F=2
$$

\triangleright There are at least 3 edges per face, and each edge is on the boundary of 2 faces for a manifold mesh

$$
3 F \geq 2 E \Longrightarrow F \geq \frac{2}{3} E
$$

Order of Edges in Planar Graph

$$
V-E+F=2
$$

\triangleright There are at least 3 edges per face, and each edge is on the boundary of 2 faces for a manifold mesh

$$
\begin{aligned}
& 3 F \geq 2 E \Longrightarrow F \geq \frac{2}{3} E \\
& V-E+\frac{2}{3} E \geq 2
\end{aligned}
$$

Order of Edges in Planar Graph

$$
V-E+F=2
$$

\triangleright There are at least 3 edges per face, and each edge is on the boundary of 2 faces for a manifold mesh

$$
\begin{aligned}
& 3 F \geq 2 E \Longrightarrow F \geq \frac{2}{3} E \\
& V-E+\frac{2}{3} E \geq 2 \\
& E \leq 3 V-6 \Longrightarrow E=O(3 V), F=O(2 V)
\end{aligned}
$$

Vertices Per Polygon

Put all vertex coordinates for each polygon

x_{11}, y_{11}, z_{11}	x_{12}, y_{12}, z_{12}	x_{13}, y_{13}, z_{13}
x_{21}, y_{21}, z_{21}	x_{22}, y_{22}, z_{22}	x_{23}, y_{23}, z_{23}
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
$x_{F 1}, y_{F 1}, z_{F 1}$	$x_{F 2}, y_{F 2}, z_{F 2}$	$x_{F 3}, y_{F 3}, z_{F 3}$

How many bytes per vertex, assuming 32-bit single precision floating point?

Vertices Per Polygon

Put all vertex coordinates for each polygon

x_{11}, y_{11}, z_{11}	x_{12}, y_{12}, z_{12}	x_{13}, y_{13}, z_{13}
x_{21}, y_{21}, z_{21}	x_{22}, y_{22}, z_{22}	x_{23}, y_{23}, z_{23}
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
$x_{F 1}, y_{F 1}, z_{F 1}$	$x_{F 2}, y_{F 2}, z_{F 2}$	$x_{F 3}, y_{F 3}, z_{F 3}$

How many bytes per vertex, assuming 32-bit single precision floating point?
$\triangleright 72$ bytes/vertex

Basic "Off File" Index-Based Format

	Faces
	$\mathrm{i}_{11} \mathrm{i}_{12} \mathrm{i}_{13}$
Vertices	
	$i_{21} i_{22} \mathrm{i}_{23}$
$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$	\ldots
...	
$\mathrm{x}_{\mathrm{N}} \mathrm{y}_{\mathrm{N}} \mathrm{z}_{\mathrm{N}}$...
	\cdots
	$\mathrm{i}_{\mathrm{F} 1} \mathrm{i}_{\mathrm{F} 2} \mathrm{i}_{\mathrm{F} 3}$

Basic "Off File" Index-Based Format

$\triangleright 36$ bytes/vertex

Basic "Off File" Index-Based Format

	Faces
	$\mathrm{i}_{11} \mathrm{i}_{12} \mathrm{i}_{13}$
Vertices	
$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$	$\mathrm{i}_{21} \mathrm{i}_{22} \mathrm{i}_{23}$
	...
...	
	...
$\mathrm{x}_{\mathrm{N}} \mathrm{yN} \mathrm{z}_{\mathrm{N}}$...
	$\mathrm{i}_{\mathrm{F} 1} \mathrm{i}_{\mathrm{F} 2} \mathrm{i}_{\mathrm{F} 3}$

$\triangleright 36$ bytes/vertex
\triangleright Vertex buffers, index buffers in OpenGL

Query "One Ring Neighbors"

\triangleright A very common operation

Query "One Ring Neighbors"

\triangleright A very common operation

\triangleright Time complexity in vertex index scheme?

Face Adjacency

Vertex	
Point	position
FacePointer	face
Face	
VertexPointer	vertices[3]
FacePointer	neighbors[3]

Face Adjacency

$\triangleright 24$ bytes per face, 16 bytes per vertex $=64$ bytes / vertex

GLEAT/S3DGLPY Format

Vertex			
Point	position	Edge	
		VertexPointer	vertex1
EdgePointer	edges[] (CCW)		
		VertexPointer	vertex2
Face			
VertexPointer	startVertex	FacePointer	face1
		FacePointer	face2
EdgePointer	edges[] (CCW)		

GLEAT/S3DGLPY Format

Vertex	
Point	position
EdgePointer	edges[] (CCW)
Face	
VertexPointer	startVertex
EdgePointer	edges[] (CCW)

Edge	
VertexPointer	vertex1
VertexPointer	vertex2
FacePointer	face1
FacePointer	face2

$\triangleright 4^{*}(3+6)$ bytes per vertex, $4^{*}(1+3)$ bytes per face, 16 bytes per edge
$\triangleright 36+16(2)+16(3)=116$ bytes/vertex

Half Edge Format

Half Edge Format

$\triangleright 16$ bytes per vertex, 4 bytes per face, 20 bytes per half-edge
$\triangleright 16+4(2)+20(3)(2$ halfedges $)=76$ bytes $/$ vertex $=144$ bytes/vertex

Half Edge One-Ring Neighbor

COMPSCI/MATH 290-04

