Lecture 20: Topology Continued, Mesh Data Structures

COMPSCI/MATH 290-04

Chris Tralie, Duke University

3/29/2016

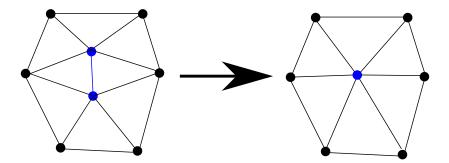
COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

+ = + + @ + + = + + = +

Э

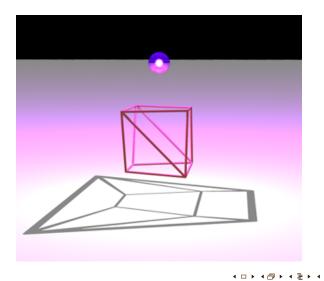
- ▷ Group Assignment 2 Due Tomorrow 3/30
- ▷ First project milestone Friday 4/8/2016
- ▷ Merged Units 3+4 Into 1 (I'm traveling on 4/21)
- Attendance sheets

- ► Connected Sums, Genus, Boundaries
- Mesh Data Structures


+ = + + # + + = + + = +

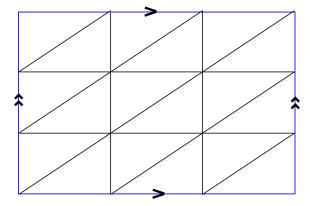
Dac

Э


Edge Collapse Case

Planar graphs: V - E + F = 2

< □ > < □ > < □ > < ⊇ > < ⊇ >

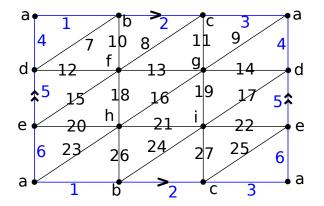

Review: Convex Shadow Casting (Stereographic Projection)

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

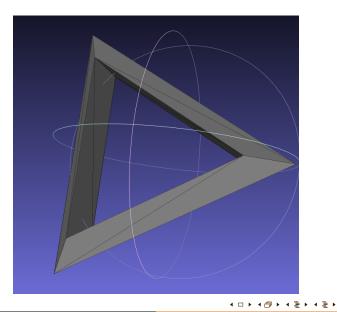
DOG

Review: Torus Euler Characteristic

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures


+ = + + @ + + = + + = +

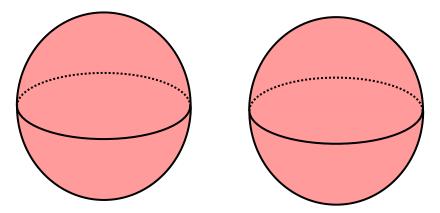
DQR


э

Review: Torus Euler Characteristic

9 vertices, 27 edges, 18 faces: $\chi = 0$

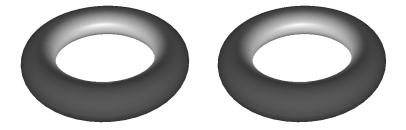
Review: Torus Euler Characteristic


COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

DQC

Э

Duplicating Spheres

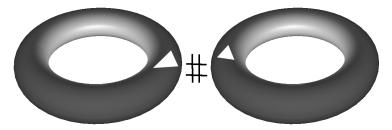

What's the euler characteristic of two spheres?

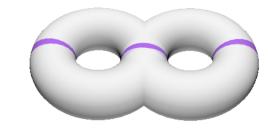
< □ ▶

/// ▶ ◄ ⋽ ▶

What's the euler characteristic of two tori?

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures


< □ > < □ > < □ > < □ > < □ > < □ >

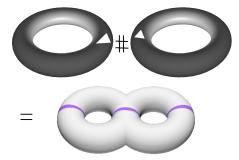

Dac

Þ

Connected Sum

 $T_1 \# T_1 = T_2$

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures


▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

999

Э

Connected Sum

 $T_1 \# T_1 = T_2$ What is the Euler characteristic?

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

Dac

э

What is the Euler characteristic of $T_N = T_1 \# T_1 \# \dots \# T_1$ g times?

+ = + + # + + = + + = +

DQC

э.

What is the Euler characteristic of $T_N = T_1 \# T_1 \# \dots \# T_1$ g times?

$$\chi = 2 - 2g$$

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

+ = + + # + + = + + = +

DQC

э.

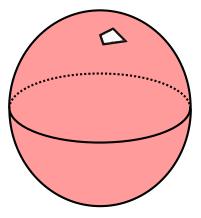
What is the Euler characteristic of $T_N = T_1 \# T_1 \# \dots \# T_1$ g times?

$$\chi = 2 - 2g$$

► g is known as the "genus"

+ = + + # + + = + + = +

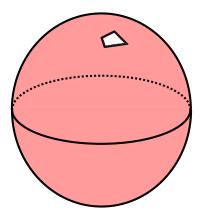
э.

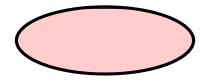

What is the connected sum of a sphere with a sphere?

・ロ・・個・・モ・・モ・ モ のへで

What is the connected sum of a torus with a sphere?

Boundaries / Discs


COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures


▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

999

Э

Boundaries / Discs

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

999

Ē.

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

$$\chi = \beta_0 - \beta_1 + \beta_2$$

- β_0 : Number of connected components
- β_1 : Number of independent loops/cycles
- β_2 Number of independent voids

Something With Euler Characteristic of 3?

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

+ = + + @ + + = + + = +

DQC

Э

- ▷ Connected Sums, Genus, Boundaries
- Mesh Data Structures

+ = + + # + + = + + = +

Dac

Э

Order of Edges in Planar Graph

$$V - E + F = 2$$

COMPSCI/MATH 290-04

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ Lecture 20: Topology Continued, Mesh Data Structures

DQC

Þ

$$V - E + F = 2$$

< □ > < □ > < □ > < □ > < □ > < □ >

$$V-E+F=2$$

 $3F \ge 2E \implies F \ge \frac{2}{3}E$

< □ > < □ > < □ > < □ > < □ > < □ >

$$V - E + F = 2$$

$$\begin{array}{l} 3F \geq 2E \implies F \geq \frac{2}{3}E \\ V - E + \frac{2}{3}E \geq 2 \end{array}$$

$$V - E + F = 2$$

< □ > < □ > < □ > < □ > < □ > < □ >

Put all vertex coordinates for each polygon

x_{11}, y_{11}, z_{11}	<i>x</i> ₁₂ , <i>y</i> ₁₂ , <i>z</i> ₁₂	<i>x</i> ₁₃ , <i>y</i> ₁₃ , <i>z</i> ₁₃
x_{21}, y_{21}, z_{21}	<i>x</i> ₂₂ , <i>y</i> ₂₂ , <i>z</i> ₂₂	<i>x</i> ₂₃ , <i>y</i> ₂₃ , <i>z</i> ₂₃
x_{F1}, y_{F1}, z_{F1}	<i>X</i> _{F2} , <i>Y</i> _{F2} , <i>Z</i> _{F2}	<i>X</i> _{F3} , <i>Y</i> _{F3} , <i>Z</i> _{F3}

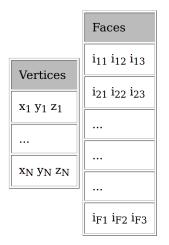
How many bytes per vertex, assuming 32-bit single precision floating point?

< □ > < □ > < □ > < □ > < □ > < □ >

Э

Put all vertex coordinates for each polygon

x_{11}, y_{11}, z_{11}	<i>x</i> ₁₂ , <i>y</i> ₁₂ , <i>z</i> ₁₂	<i>x</i> ₁₃ , <i>y</i> ₁₃ , <i>z</i> ₁₃
x_{21}, y_{21}, z_{21}	<i>x</i> ₂₂ , <i>y</i> ₂₂ , <i>z</i> ₂₂	<i>x</i> ₂₃ , <i>y</i> ₂₃ , <i>z</i> ₂₃
x_{F1}, y_{F1}, z_{F1}	<i>X</i> _{F2} , <i>Y</i> _{F2} , <i>Z</i> _{F2}	<i>x</i> _{F3} , <i>y</i> _{F3} , <i>z</i> _{F3}


How many bytes per vertex, assuming 32-bit single precision floating point?

▷ 72 bytes/vertex

< □ > < □ > < □ > < □ > < □ > < □ >

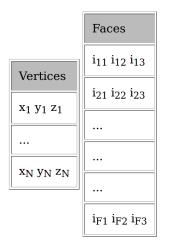
Э

Basic "Off File" Index-Based Format

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

(□) (□) (□) (Ξ) (Ξ) (Ξ)

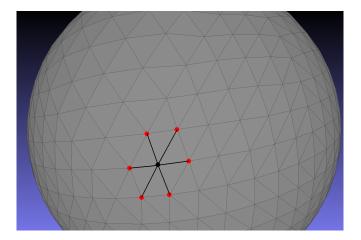
Basic "Off File" Index-Based Format



▷ 36 bytes/vertex

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

< □ ▶ < ⊡ ▶ < ⊇ ▶ < ⊇ ▶

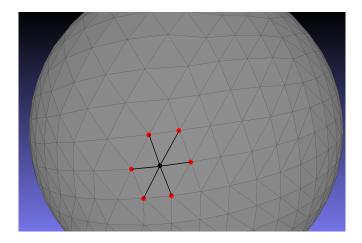

Basic "Off File" Index-Based Format

- ▷ 36 bytes/vertex
- ▷ Vertex buffers, index buffers in OpenGL

Query "One Ring Neighbors"

▷ A very common operation

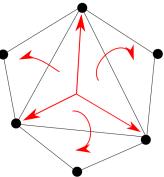
COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures


< □ > < □ > < □ > < ⊇ > < ⊇ >

999

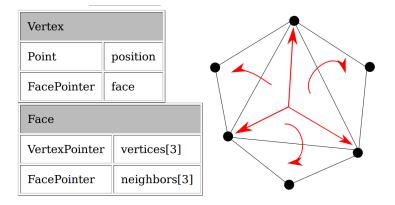
Э

Query "One Ring Neighbors"


▷ A very common operation

▷ Time complexity in vertex index scheme?

< □ ▶


Vertex		
Point	position	•
FacePointer	face	Ţ
Face		
VertexPointer	vertices[3]	
FacePointer	neighbors[3	J

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

DQC

Ē.

▷ 24 bytes per face, 16 bytes per vertex = 64 bytes / vertex

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

Dac

Э

GLEAT/S3DGLPY Format

Vertex		ſ		
			Edge	
Point	position		VertexPointer	vertex1
EdgePointer				
			VertexPointer vertex2	
Face			FacePointer	face1
VertexPointer	startVertex			
			FacePointer	face2
EdgePointer	edges[] (CCW)			

< □ > < □ > < □ > < ⊇ > < ⊇ >

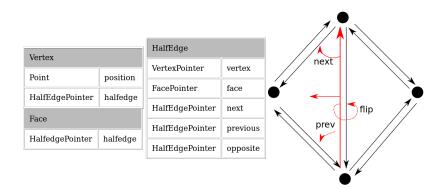
э.

DQC

GLEAT/S3DGLPY Format

Vertex				1	
			Edge		
Point	position				
EdgePointer	edges[] (CCW)		VertexPointer	vertex1	
Eugeromter			VertexPointer	vertex2	
Face					
			FacePointer	face1	
VertexPointer	startVertex	rtVertex	FacePointer	face2	
EdgePointer	EdgePointer edges[] (CCW)		Faceronner	Idcez	
Lagoromitor					

▷ 4*(3+6) bytes per vertex, 4*(1+3) bytes per face, 16 bytes per edge

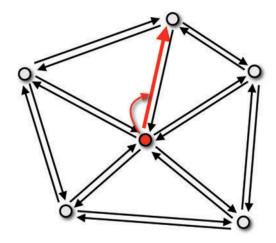

Э

Vertex		HalfEdge		
Point	position	VertexPointer	vertex	next
	-	FacePointer	face	
HalfEdgePointer	halfedge	HalfEdgePointer	next	flip
Face				prev
HalfedgePointer	halfedge	HalfEdgePointer	previous	
	<u> </u>	HalfEdgePointer	opposite	
				▲ ♥ / /

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

э.

999



- 16 bytes per vertex, 4 bytes per face, 20 bytes per half-edge
- ▷ 16 + 4(2) + 20(3)(2 halfedges) = 76 bytes / vertex = 144 bytes/vertex

+ = + + # + + = + + = +

ъ

Half Edge One-Ring Neighbor

COMPSCI/MATH 290-04 Lecture 20: Topology Continued, Mesh Data Structures

Image: A image: A

- ₹ € ▶

990