Lecture 25: Geodesic Paths

COMPSCI/MATH 290-04

Chris Tralie, Duke University

4/14/2016

Announcements

\triangleright Group Assignment 3 Out: First Deadline Monday 4/18. Final Deadline Tuesday 4/26
\triangleright Final Project Final Deadline 5/3 5:00 PM

Table of Contents

- Geodesics
\triangleright Dijkstra's / Fast Marching
\triangleright G2 Geodesic Histograms

Geodesic Paths

Euclidean Path (shortest path of flying fly)

Geodesic Paths

Geodesic Path (shortest path of crawling ant)

Geodesic Paths on Spheres

Geodesic Paths on Spheres

\triangleright Geodesic paths on spheres lie along great circles

Geodesic Paths on Spheres

\triangleright Geodesic paths on spheres lie along great circles
\triangleright Geodesic distance is the shortest geodesic path

Geodesic Paths on Spheres

\triangleright Geodesic paths on spheres lie along great circles
\triangleright Geodesic distance is the shortest geodesic path
\triangleright What is the geodesic distance between two points \vec{P} and \vec{Q} on a sphere centered at the origin with radius R ?

Geodesic Paths on Spheres

What is the geodesic distance between two points \vec{P} and \vec{Q} on a sphere centered at the origin with radius R ?

$$
R \cos ^{-1}\left(\frac{\vec{P} \cdot \vec{Q}}{\|\vec{P}\|\|\vec{Q}\|}\right)=R \cos ^{-1}\left(\frac{\vec{P} \cdot \vec{Q}}{R^{2}}\right)
$$

Remember SLERP??

Another Geodesic Mesh Example

Table of Contents

\triangleright Geodesics

- Dijkstra's / Fast Marching
\triangleright G2 Geodesic Histograms

Dijkstra's Algorithm Review

```
def Dijsktra(Graph, source):
```

 list dists
 list prev
 dist[source] \(=0\)
 Queue Q
 for vertex \(v\) in Graph:
 if \(v\) not source:
 dists[v] = Infinity
 prev[v] = Undefined
 Q.add(v, dists[v])
 while len (Q) > 0 :
$u=Q . g e t M i n()$
for v in neighbors(u):
$\mathrm{d}=$ dists[u] + length(u, $v)$
if $d<d i s t s[v]:$
dists[v] = d
prev[v] = u
Q.decreasePriority (v, d)
return (dist, prev)

Dijkstra's Algorithm Review

```
def Dijsktra(Graph, source):
    list dists
    list prev
    dist[source] = 0
    Queue Q
    for vertex v in Graph:
        if v not source:
            dists[v] = Infinity
            prev[v] = Undefined
        Q.add(v, dists[v])
while len(Q) > 0:
    u = Q.getMin()
    for v in neighbors(u):
        d = dists[u] + length(u, v)
        if d < dists[v]:
            dists[v] = d
            prev[v] = u
            Q.decreasePriority(v, d)
return (dist, prev)
```


What is the worst case behavior for

$\triangleright V$ vertices
$\triangleright E$ edges
for a balanced min heap Q ?
$\mathrm{d}=$ dists[u] + length(u, v)
if $d<d i s t s[v]:$
dists[v] = d prev[v] = u
Q.decreasePriority(v, d)
return (dist, prev)

Dijkstra's Algorithm Review

```
def Dijsktra(Graph, source):
    list dists
    list prev
    dist[source] = 0
    Queue Q
    for vertex v in Graph:
        if v not source:
            dists[v] = Infinity
            prev[v] = Undefined
        Q.add(v, dists[v])
while len(Q) > 0:
    u = Q.getMin()
    for v in neighbors(u):
        d = dists[u] + length(u, v)
        if d < dists[v]:
            dists[v] = d
            prev[v] = u
                        Q.decreasePriority(v, d)
return (dist, prev)
```


What is the worst case behavior for

 tices
$\triangleright E$ edges
for a balanced min heap Q ?

$$
O((E+V) \log (V))
$$

Dijkstra's Directly on Mesh Edges

Dijkstra's Directly on Mesh Edges

8x8 Cartesian Grid: Side Length 1

Shortest path along mesh is length $7 \sqrt{2}$

Dijkstra's Directly on Mesh Edges

8x8 Cartesian Grid: Side Length 1

Dijkstra's Directly on Mesh Edges

8x8 Cartesian Grid: Side Length 1

Shortest path along mesh is 14

Dijkstra's Directly on Mesh Edges

Does refining the grid help?
15×15 Cartesian Grid: Side Length 0.5

Dijkstra's Directly on Mesh Edges

Does refining the grid help?
15×15 Cartesian Grid: Side Length 0.5

Nope!

Dijkstra's Directly on Mesh Edges

In general, mesh biases the solution!

COMPSCI/MATH 290-04
Lecture 25: Geodesic Paths

Fast Marching

A modification of Dijkstra's algorithm to cut through triangles

Fast Marching

A modification of Dijkstra's algorithm to cut through triangles

Table of Contents

\triangleright Geodesics
\triangleright Dijkstra's / Fast Marching

- G2 Geodesic Histograms

Mesh Isomorphisms

An isomorphism preserves all pairwise geodesic distances

틀

Mesh Isomorphisms

Contrast with Euclidean

