Lecture 26: MDS / Canonical Forms

COMPSCI/MATH 290-04

Chris Tralie, Duke University

> 4/19/2016

Announcements

\triangleright Group Assignment 3 Final Deadline Tuesday 4/26
\triangleright Guest Lecture Thursday
\triangleright No office hours Thursday

Spin Images

Why did they all look so boring and unlike the objects in question?

Spin Images

I made a mistake on the assignment! First principal axis is vertical axis in image

Table of Contents

- Multidimensional Scaling
\triangleright Canonical Forms

Academic Majors Distances: Your Choices

	Art History	English	Math	CS	ECE	Philosophy
Art History	0	0.36	0.74	0.8	0.81	0.37
English	0.36	0	0.7	0.8	0.82	0.29
Math	0.74	0.7	0	0.31	0.32	0.59
CS	0.8	0.8	0.31	0	0.2	0.71
ECE	0.81	0.82	0.32	0.2	0	0.77
Philosophy	0.37	0.29	0.59	0.71	0.77	0

Multidimensional Scaling down to \mathbb{R}^{2}

Academic Majors Distances: Chris's Choices

	Art History	English	Math	CS	ECE	Philosophy
Art History	0	0.3	1	0.9	1	0.5
English	0.3	1	0	0.9	0.8	1

Multidimensional Scaling down to \mathbb{R}^{2}

Multidimensional Scaling

\triangleright Given an $N \times N$ symmetric discrete similarity matrix D (i.e.

$$
\left.D_{i j}=D_{j i}\right)
$$

\triangleright Given a Euclidean dimension K
Find a point cloud $X \in \mathbb{R}^{N \times K}$ so that

$$
D_{i j} \approx \sqrt{\sum_{k=1}^{K}(X[i, k]-X[j, k])^{2}}
$$

Multidimensional Scaling

\triangleright Given an $N \times N$ symmetric discrete similarity matrix D (i.e.

$$
\left.D_{i j}=D_{j i}\right)
$$

\triangleright Given a Euclidean dimension K
Find a point cloud $X \in \mathbb{R}^{N \times K}$ so that

$$
D_{i j} \approx \sqrt{\sum_{k=1}^{K}(X[i, k]-X[j, k])^{2}}
$$

In other words, find a point cloud in Euclidean K-space that best approximates the distances

MDS: Euclidean Dimension Reduction

$$
D_{i j} \approx \sqrt{\sum_{k=1}^{K}(X[i, k]-X[j, k])^{2}}
$$

What if $D_{i j}$ comes from a Euclidena space of dimension $d>k$? Can we solve this using something else we learned in the course?

MDS: Euclidean Dimension Reduction

$$
D_{i j} \approx \sqrt{\sum_{k=1}^{K}(X[i, k]-X[j, k])^{2}}
$$

What if $D_{i j}$ comes from a Euclidena space of dimension $d>k$? Can we solve this using something else we learned in the course?
This is equivalent to PCA!! If we let $k=d$, then we can represent distances exactly

MDS: Non-Euclidean Space Reduction

Can we always find a point cloud that satisfies a given D by making k arbitrarily high?

MDS: Non-Euclidean Space Reduction

Can we always find a point cloud that satisfies a given D by making k arbitrarily high? Assume sphere of radius $2 / \pi$ with points in the following configuration:

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}				
v_{2}				
v_{3}				
v_{4}				

MDS: Non-Euclidean Space Reduction

Can we always find a point cloud that satisfies a given D by making k arbitrarily high?
Assume sphere of radius $2 / \pi$ with points in the following configuration:

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	0	2	1	1
v_{2}	2	0	1	1
v_{3}	1	1	0	1
v_{4}	1	1	1	0

MDS: Non-Euclidean Space Reduction

Assume sphere of radius $2 / \pi$ with points in the following configuration:

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	0	2	1	1
v_{2}	2	0	1	1
v_{3}	1	1	0	1
v_{4}	1	1	1	0

MDS: Non-Euclidean Space Reduction

Assume sphere of radius $2 / \pi$ with points in the following configuration:

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	0	2	1	1
v_{2}	2	0	1	1
v_{3}	1	1	0	1
v_{4}	1	1	1	0

v_{1}, v_{3}, v_{2} along a line

MDS: Non-Euclidean Space Reduction

Assume sphere of radius $2 / \pi$ with points in the following configuration:

v_{1}, v_{3}, v_{2} along a line

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	0	2	1	1
v_{2}	2	0	1	1
v_{3}	1	1	0	1
v_{4}	1	1	1	0

v_{1}, v_{4}, v_{2} also along line!

MDS: Non-Euclidean Space Reduction

v_{1}, v_{3}, v_{2} along a line

v_{1}, v_{4}, v_{2} also along line!

This implies that v_{4} and v_{3} must collapse to the same point in any Euclidean space.
\triangleright In other words, distances along the sphere cannot be perfectly realized using a Euclidean space of any finite dimension!

MDS: Non-Euclidean Space Reduction

v_{1}, v_{3}, v_{2} along a line

v_{1}, v_{4}, v_{2} also along line!

This implies that v_{4} and v_{3} must collapse to the same point in any Euclidean space.
\triangleright In other words, distances along the sphere cannot be perfectly realized using a Euclidean space of any finite dimension!
\triangleright (But let's do our best and see what we come up with)

Table of Contents

- Multidimensional Scaling
\triangleright Canonical Forms

Nonrigid Shape Alignment

How do I align these two camels??

Geodesic Distances

Geodesic distances are invariant to isometries (aka bending without stretching)

Geodesic Distances

Geodesic distances are invariant to isometries (aka bending without stretching)

What if we try to apply MDS to the distance matrix we get from geodesic distances?

Face Example

Face Example

Face Example

Face Example

More Examples

Canonical forms

Bronstein

Lots More Examples

Elad Kimmel 2001: "Bending Invariant Representations for Surfaces"

