Lecture 26: MDS / Canonical Forms

COMPSCI/MATH 290-04

Chris Tralie, Duke University

4/19/2016

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

(a)

Dace

- > Group Assignment 3 Final Deadline Tuesday 4/26
- Guest Lecture Thursday
- ▷ No office hours Thursday

< 回 > < 回 > < 回 >

э.

Spin Images

Why did they all look so boring and unlike the objects in question?

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

Dac

э

I made a mistake on the assignment! First principal axis is vertical axis in image

- Multidimensional Scaling
- Canonical Forms

+ = + + # + + = + + = +

э.

Academic Majors Distances: Your Choices

	Art History	English	Math	CS	ECE	Philosophy
Art History	0	0.36	0.74	0.8	0.81	0.37
English	0.36	0	0.7	0.8	0.82	0.29
Math	0.74	0.7	0	0.31	0.32	0.59
CS	0.8	0.8	0.31	0	0.2	0.71
ECE	0.81	0.82	0.32	0.2	0	0.77
Philosophy	0.37	0.29	0.59	0.71	0.77	0

Multidimensional Scaling down to \mathbb{R}^2

COMPSCI/MATH 290-04

Lecture 26: MDS / Canonical Forms

Academic Majors Distances: Chris's Choices

	Art History	English	Math	CS	ECE	Philosophy
Art History	0	0.3	1	0.9	1	0.5
English	0.3	0	0.9	0.8	1	0.3
Math	1	0.9	0	0.3	0.2	0.3
CS	0.9	0.8	0.3	0	0.1	0.4
ECE	1	1	0.2	0.1	0	0.6
Philosophy	0.5	0.3	0.3	0.4	0.6	0

Multidimensional Scaling down to \mathbb{R}^2

ヨト・ヨト

4

æ

 \triangleright Given a Euclidean dimension K

Find a point cloud $X \in \mathbb{R}^{N \times K}$ so that

$$D_{ij} \approx \sqrt{\sum_{k=1}^{K} (X[i,k] - X[j,k])^2}$$

Sac

 \triangleright Given a Euclidean dimension K

Find a point cloud $X \in \mathbb{R}^{N \times K}$ so that

$$\mathcal{D}_{ij} \approx \sqrt{\sum_{k=1}^{K} (X[i,k] - X[j,k])^2}$$

In other words, find a point cloud in Euclidean *K*-space that *best approximates* the distances

</li

Sac

MDS: Euclidean Dimension Reduction

$$D_{ij} \approx \sqrt{\sum_{k=1}^{K} (X[i,k] - X[j,k])^2}$$

What if D_{ij} comes from a Euclidena space of dimension d > k? Can we solve this using something else we learned in the course?

Sar

MDS: Euclidean Dimension Reduction

$$D_{ij} \approx \sqrt{\sum_{k=1}^{K} (X[i,k] - X[j,k])^2}$$

What if D_{ij} comes from a Euclidena space of dimension d > k? Can we solve this using something else we learned in the course?

This is equivalent to PCA!! If we let k = d, then we can represent distances exactly

Sar

Can we always find a point cloud that satisfies a given D by making k arbitrarily high?

< < >>

Dace

3

Can we always find a point cloud that satisfies a given *D* by making *k* arbitrarily high? Assume sphere of radius $2/\pi$ with points in the following configuration:

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4
<i>V</i> ₁				
<i>V</i> ₂				
<i>V</i> 3				
<i>V</i> ₄				

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Can we always find a point cloud that satisfies a given *D* by making *k* arbitrarily high? Assume sphere of radius $2/\pi$ with points in the following configuration:

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4
<i>V</i> ₁	0	2	1	1
<i>V</i> ₂	2	0	1	1
V ₃	1	1	0	1
<i>V</i> ₄	1	1	1	0

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Assume sphere of radius $2/\pi$ with points in the following configuration:

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4
<i>V</i> ₁	0	2	1	1
<i>V</i> ₂	2	0	1	1
<i>V</i> 3	1	1	0	1
<i>V</i> 4	1	1	1	0

Dace

Assume sphere of radius $2/\pi$ with points in the following configuration:

	<i>V</i> ₁	<i>V</i> ₂	V ₃	<i>V</i> 4
<i>V</i> ₁	0	2	1	1
<i>V</i> ₂	2	0	1	1
<i>V</i> 3	1	1	0	1
<i>V</i> 4	1	1	1	0

Dace

 v_1, v_3, v_2 along a line

Assume sphere of radius $2/\pi$ with points in the following configuration:

<i>v</i> ₁ ,	<i>V</i> 3,	V_2	along	а	line
-------------------------	-------------	-------	-------	---	------

	<i>V</i> ₁	<i>V</i> ₂	V ₃	<i>V</i> 4
<i>V</i> ₁	0	2	1	1
<i>V</i> ₂	2	0	1	1
<i>V</i> 3	1	1	0	1
<i>V</i> 4	1	1	1	0

 v_1, v_4, v_2 also along line!

Sac

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 v_1, v_3, v_2 along a line v_1, v_4, v_2 also along line! This implies that v_4 and v_3 must collapse to the same point in any Euclidean space.

In other words, distances along the sphere cannot be perfectly realized using a Euclidean space of any finite dimension!

Sac

 v_1, v_3, v_2 along a line v_1, v_4, v_2 also along line! This implies that v_4 and v_3 must collapse to the same point in any Euclidean space.

- In other words, distances along the sphere cannot be perfectly realized using a Euclidean space of any finite dimension!
- ▷ (But let's do our best and see what we come up with)

- Multidimensional Scaling
- Canonical Forms

+ = + + # + + = + + = +

э.

Nonrigid Shape Alignment

How do I align these two camels??

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

Dac

<**∂** > < ⊇ >

< □ ▶

- 4 ⊒ →

Geodesic Distances

Geodesic distances are invariant to *isometries* (aka bending without stretching)

- 4 ⊒ →

Dace

Geodesic Distances

Geodesic distances are invariant to *isometries* (aka bending without stretching)

What if we try to apply MDS to the distance matrix we get from geodesic distances?

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

<□▶ </₽> < \arrow <

5900

Ð

<□▶ </₽> < \arrow <

5900

Ð

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

↓□▶ ↓@▶ ↓ E▶ ↓ E▶

DQC

Ð

< □ ▶ < @ ▶ < \ > ▲ \ >

5900

Ð

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms

More Examples

Near-isometric deformations of a shape

Canonical forms

Bronstein

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶

Dac

Э

Lots More Examples

4 🗆 🕨

Sac

Elad Kimmel 2001: "Bending Invariant Representations for Surfaces"

COMPSCI/MATH 290-04 Lecture 26: MDS / Canonical Forms